logo
Next ❯ ❮ Previous

Limits Formulas:

DEFINITION OF LIMITS
www.faastop.com الله π www.faastop.com الله π If the functional values of f(x)in the neighborhood of "𝑎" approach,a fixed real value k then we saythe limit of f(x) is k as x tends to a. limx→𝑎 𝑓(x) = K (or) Ltx→𝑎 𝑓(x) = K www.faastop.com الله π If the functional values of f(x)in the neighborhood of "𝑎" approach,a fixed real value k then we saythe limit of f(x) is k as x tends to a. If the functional values of f(x)in the neighborhood of "𝑎" approach,a fixed real value k then we saythe limit of f(x) is k as x tends to a. limx→𝑎 𝑓(x) = K (or) Ltx→𝑎 𝑓(x) = K limx→𝑎 𝑓(x) = K (or) If the functional values of f(x)in the neighborhood of "𝑎" approach,a fixed real value k then we saythe limit of f(x) is k as x tends to a. limx→𝑎 𝑓(x) = K (or) Ltx→𝑎 𝑓(x) = K Ltx→𝑎 𝑓(x) = K If the functional values of f(x)in the neighborhood of "𝑎" approach,a fixed real value k then we saythe limit of f(x) is k as x tends to a. limx→𝑎 𝑓(x) = K (or) Ltx→𝑎 𝑓(x) = K
STANDARD LIMITS
limx→𝑎 ——xⁿ-𝑎ⁿx-𝑎 = 𝑛𝑎¹www.faastop.com الله π limx→𝑎 ——xⁿ-𝑎ⁿx-𝑎 = 𝑛𝑎¹limx→𝑎 ——xⁿ-𝑎ⁿx-𝑎 = 𝑛𝑎¹
limx→0 ——𝑠𝑖𝑛xx = 1www.faastop.com الله π limx→0 ——𝑠𝑖𝑛xx = 1limx→0 ——𝑠𝑖𝑛xx = 1
limx→∞ ——𝑠𝑖𝑛xx = 0www.faastop.com الله π limx→∞ ——𝑠𝑖𝑛xx = 0limx→∞ ——𝑠𝑖𝑛xx = 0
limx→0 ——𝑡𝑎𝑛xx = 1www.faastop.com الله π limx→0 ——𝑡𝑎𝑛xx = 1limx→0 ——𝑡𝑎𝑛xx = 1
limx→0 ——𝑒x      -1x = 1www.faastop.com الله π limx→0 ——𝑒x      -1x = 1limx→0 ——𝑒x      -1x = 1
limx→0 ——In(1+x)x =1www.faastop.com الله π limx→0 ——In(1+x)x =1limx→0 ——In(1+x)x =1
limx→∞ (1+x)1/x = 𝑒www.faastop.com الله π limx→∞ (1+x)1/x = 𝑒limx→∞ (1+x)1/x = 𝑒
limx→0 (1+𝑎x)1/x = 𝑒𝑎www.faastop.com الله π limx→0 (1+𝑎x)1/x = 𝑒𝑎limx→0 (1+𝑎x)1/x = 𝑒𝑎
limx→∞[1+ ——1x     ]                                   x = 𝑒www.faastop.com الله π limx→∞[1+ ——1x     ]                                   x = 𝑒limx→∞[1+ ——1x     ]                                   x = 𝑒
limx→∞[1+ ——𝑎x     ]                                   x = 𝑒𝑎www.faastop.com الله π limx→∞[1+ ——𝑎x     ]                                   x = 𝑒𝑎limx→∞[1+ ——𝑎x     ]                                   x = 𝑒𝑎
limx→∞ (x)1/x = 1www.faastop.com الله π limx→∞ (x)1/x = 1limx→∞ (x)1/x = 1
limx→0 (x)x = 1www.faastop.com الله π limx→0 (x)x = 1limx→0 (x)x = 1
INDETERMINATE FORMS
[ ——00, ——, 0×, -, 1, 0, 0 ]www.faastop.com الله π [ ——00, ——, 0×, -, 1, 0, 0 ][ ——00, ——, 0×, -, 1, 0, 0 ]
PROPERTIES OF LIMITS
Assume Ltx→𝑎𝑓(x) and Ltx→𝑎g(x) both exist and L is any real number, then www.faastop.com الله π Assume Ltx→𝑎𝑓(x) and Ltx→𝑎g(x) both exist and L is any real number, then Assume Ltx→𝑎𝑓(x) and Ltx→𝑎g(x) both exist and L is any real number, then
Ltx→𝑎L𝑓(x) =LLtx→𝑎𝑓(x) www.faastop.com الله π Ltx→𝑎L𝑓(x) =LLtx→𝑎𝑓(x) Ltx→𝑎L𝑓(x) =LLtx→𝑎𝑓(x)
limx→𝑎 [𝑓(x)+ 𝑔(x)] = limx→𝑎 𝑓(x)+ limx→𝑎 𝑔(x)www.faastop.com الله π limx→𝑎 [𝑓(x)+ 𝑔(x)] = limx→𝑎 𝑓(x)+ limx→𝑎 𝑔(x)limx→𝑎 [𝑓(x)+ 𝑔(x)] = limx→𝑎 𝑓(x)+ limx→𝑎 𝑔(x)
limx→𝑎 [𝑓(x) 𝑔(x)] = limx→𝑎 𝑓(x) limx→𝑎 𝑔(x)www.faastop.com الله π limx→𝑎 [𝑓(x) 𝑔(x)] = limx→𝑎 𝑓(x) limx→𝑎 𝑔(x)limx→𝑎 [𝑓(x) 𝑔(x)] = limx→𝑎 𝑓(x) limx→𝑎 𝑔(x)
limx→𝑎[𝑓(x)𝑔(x)] = limx→𝑎𝑓(x) limx→𝑎𝑔(x) , where limx→𝑎𝑔(x) ≠ 0www.faastop.com الله π limx→𝑎[𝑓(x)𝑔(x)] = limx→𝑎𝑓(x) limx→𝑎𝑔(x) , where limx→𝑎𝑔(x) ≠ 0limx→𝑎[𝑓(x)𝑔(x)] = limx→𝑎𝑓(x) limx→𝑎𝑔(x) , where limx→𝑎𝑔(x) ≠ 0
limx→𝑎[𝑓(x)] =[limx→𝑎 𝑓(x)] www.faastop.com الله π limx→𝑎[𝑓(x)] =[limx→𝑎 𝑓(x)] limx→𝑎[𝑓(x)] =[limx→𝑎 𝑓(x)]
limx→𝑎 𝑓(x) = limx→𝑎 𝑓(x) www.faastop.com الله π limx→𝑎 𝑓(x) = limx→𝑎 𝑓(x) limx→𝑎 𝑓(x) = limx→𝑎 𝑓(x)
CONTINUITYT
www.faastop.com الله π A function f(x) is said to be continuous at x = 𝑎 if , Ltx→𝑎⁻𝑓(x) = Ltx→𝑎⁺𝑓(x) = f(a)www.faastop.com الله π A function f(x) is said to be continuous at x = 𝑎 if , A function f(x) is said to be continuous at x = 𝑎 if , Ltx→𝑎⁻𝑓(x) = Ltx→𝑎⁺𝑓(x) = f(a) Ltx→𝑎⁻𝑓(x) = Ltx→𝑎⁺𝑓(x) = f(a) A function f(x) is said to be continuous at x = 𝑎 if , Ltx→𝑎⁻𝑓(x) = Ltx→𝑎⁺𝑓(x) = f(a)
logo