Close ×
Trigonometry Formulas
Limits and continuity
Derivatives
Integration
Close ×
MATH FORMULAS
HAND WRITTEN NOTES
☯
Next ❯
❮ Previous
Limits Formulas:
DEFINITION OF LIMITS
www.faastop.com
الله
π
www.faastop.com
الله
π
If the functional values of f(x)
in the neighborhood of "𝑎" approach,
a fixed real value k then we say
the limit of f(x) is k as x tends to a.
lim
x→𝑎
𝑓
(
x
)
=
K
(or)
Lt
x→𝑎
𝑓
(
x
)
=
K
www.faastop.com
الله
π
If the functional values of f(x)
in the neighborhood of "𝑎" approach,
a fixed real value k then we say
the limit of f(x) is k as x tends to a.
If the functional values of f(x)
in the neighborhood of "𝑎" approach,
a fixed real value k then we say
the limit of f(x) is k as x tends to a.
lim
x→𝑎
𝑓
(
x
)
=
K
(or)
Lt
x→𝑎
𝑓
(
x
)
=
K
lim
x→𝑎
𝑓
(
x
)
=
K
(or)
If the functional values of f(x)
in the neighborhood of "𝑎" approach,
a fixed real value k then we say
the limit of f(x) is k as x tends to a.
lim
x→𝑎
𝑓
(
x
)
=
K
(or)
Lt
x→𝑎
𝑓
(
x
)
=
K
Lt
x→𝑎
𝑓
(
x
)
=
K
If the functional values of f(x)
in the neighborhood of "𝑎" approach,
a fixed real value k then we say
the limit of f(x) is k as x tends to a.
lim
x→𝑎
𝑓
(
x
)
=
K
(or)
Lt
x→𝑎
𝑓
(
x
)
=
K
STANDARD LIMITS
lim
x→𝑎
——
xⁿ-𝑎ⁿ
x-𝑎
=
𝑛
𝑎
ⁿ
⁻
¹
www.faastop.com
الله
π
lim
x→𝑎
——
xⁿ-𝑎ⁿ
x-𝑎
=
𝑛
𝑎
ⁿ
⁻
¹
lim
x→𝑎
——
xⁿ-𝑎ⁿ
x-𝑎
=
𝑛
𝑎
ⁿ
⁻
¹
lim
x→0
——
𝑠𝑖𝑛x
x
=
1
www.faastop.com
الله
π
lim
x→0
——
𝑠𝑖𝑛x
x
=
1
lim
x→0
——
𝑠𝑖𝑛x
x
=
1
lim
x→∞
——
𝑠𝑖𝑛x
x
=
0
www.faastop.com
الله
π
lim
x→∞
——
𝑠𝑖𝑛x
x
=
0
lim
x→∞
——
𝑠𝑖𝑛x
x
=
0
lim
x→0
——
𝑡𝑎𝑛x
x
=
1
www.faastop.com
الله
π
lim
x→0
——
𝑡𝑎𝑛x
x
=
1
lim
x→0
——
𝑡𝑎𝑛x
x
=
1
lim
x→0
——
𝑒
x
-1
x
=
1
www.faastop.com
الله
π
lim
x→0
——
𝑒
x
-1
x
=
1
lim
x→0
——
𝑒
x
-1
x
=
1
lim
x→0
——
In(1+x)
x
=
1
www.faastop.com
الله
π
lim
x→0
——
In(1+x)
x
=
1
lim
x→0
——
In(1+x)
x
=
1
lim
x→∞
(
1
+
x
)
1/x
=
𝑒
www.faastop.com
الله
π
lim
x→∞
(
1
+
x
)
1/x
=
𝑒
lim
x→∞
(
1
+
x
)
1/x
=
𝑒
lim
x→0
(
1
+
𝑎
x
)
1/x
=
𝑒
𝑎
www.faastop.com
الله
π
lim
x→0
(
1
+
𝑎
x
)
1/x
=
𝑒
𝑎
lim
x→0
(
1
+
𝑎
x
)
1/x
=
𝑒
𝑎
lim
x→∞
[
1
+
——
1
x
]
x
=
𝑒
www.faastop.com
الله
π
lim
x→∞
[
1
+
——
1
x
]
x
=
𝑒
lim
x→∞
[
1
+
——
1
x
]
x
=
𝑒
lim
x→∞
[
1
+
——
𝑎
x
]
x
=
𝑒
𝑎
www.faastop.com
الله
π
lim
x→∞
[
1
+
——
𝑎
x
]
x
=
𝑒
𝑎
lim
x→∞
[
1
+
——
𝑎
x
]
x
=
𝑒
𝑎
lim
x→∞
(
x
)
1/x
=
1
www.faastop.com
الله
π
lim
x→∞
(
x
)
1/x
=
1
lim
x→∞
(
x
)
1/x
=
1
lim
x→0
(
x
)
x
=
1
www.faastop.com
الله
π
lim
x→0
(
x
)
x
=
1
lim
x→0
(
x
)
x
=
1
INDETERMINATE FORMS
[
——
0
0
,
——
∞
∞
,
0
×
∞
,
∞
-
∞
,
1
∞
,
0
∞
,
∞
0
]
www.faastop.com
الله
π
[
——
0
0
,
——
∞
∞
,
0
×
∞
,
∞
-
∞
,
1
∞
,
0
∞
,
∞
0
]
[
——
0
0
,
——
∞
∞
,
0
×
∞
,
∞
-
∞
,
1
∞
,
0
∞
,
∞
0
]
PROPERTIES OF LIMITS
A
s
s
u
m
e
Lt
x→𝑎
𝑓(x)
a
n
d
Lt
x→𝑎
g(x)
both exist and
L
is any real number, then
www.faastop.com
الله
π
A
s
s
u
m
e
Lt
x→𝑎
𝑓(x)
a
n
d
Lt
x→𝑎
g(x)
both exist and
L
is any real number, then
A
s
s
u
m
e
Lt
x→𝑎
𝑓(x)
a
n
d
Lt
x→𝑎
g(x)
both exist and
L
is any real number, then
Lt
x→𝑎
L
𝑓(x)
=
L
Lt
x→𝑎
𝑓(x)
www.faastop.com
الله
π
Lt
x→𝑎
L
𝑓(x)
=
L
Lt
x→𝑎
𝑓(x)
Lt
x→𝑎
L
𝑓(x)
=
L
Lt
x→𝑎
𝑓(x)
lim
x→𝑎
[
𝑓
(
x
)
+
₋
𝑔
(
x
)
]
=
lim
x→𝑎
𝑓
(
x
)
+
₋
lim
x→𝑎
𝑔
(
x
)
www.faastop.com
الله
π
lim
x→𝑎
[
𝑓
(
x
)
+
₋
𝑔
(
x
)
]
=
lim
x→𝑎
𝑓
(
x
)
+
₋
lim
x→𝑎
𝑔
(
x
)
lim
x→𝑎
[
𝑓
(
x
)
+
₋
𝑔
(
x
)
]
=
lim
x→𝑎
𝑓
(
x
)
+
₋
lim
x→𝑎
𝑔
(
x
)
lim
x→𝑎
[
𝑓
(
x
)
𝑔
(
x
)
]
=
lim
x→𝑎
𝑓
(
x
)
lim
x→𝑎
𝑔
(
x
)
www.faastop.com
الله
π
lim
x→𝑎
[
𝑓
(
x
)
𝑔
(
x
)
]
=
lim
x→𝑎
𝑓
(
x
)
lim
x→𝑎
𝑔
(
x
)
lim
x→𝑎
[
𝑓
(
x
)
𝑔
(
x
)
]
=
lim
x→𝑎
𝑓
(
x
)
lim
x→𝑎
𝑔
(
x
)
lim
x→𝑎
[
𝑓(x)
𝑔(x)
]
=
lim
x→𝑎
𝑓(x)
lim
x→𝑎
𝑔(x)
,
where
lim
x→𝑎
𝑔(x) ≠ 0
www.faastop.com
الله
π
lim
x→𝑎
[
𝑓(x)
𝑔(x)
]
=
lim
x→𝑎
𝑓(x)
lim
x→𝑎
𝑔(x)
,
where
lim
x→𝑎
𝑔(x) ≠ 0
lim
x→𝑎
[
𝑓(x)
𝑔(x)
]
=
lim
x→𝑎
𝑓(x)
lim
x→𝑎
𝑔(x)
,
where
lim
x→𝑎
𝑔(x) ≠ 0
lim
x→𝑎
[
𝑓
(
x
)
]
ⁿ
=
[
lim
x→𝑎
𝑓
(
x
)
]
ⁿ
www.faastop.com
الله
π
lim
x→𝑎
[
𝑓
(
x
)
]
ⁿ
=
[
lim
x→𝑎
𝑓
(
x
)
]
ⁿ
lim
x→𝑎
[
𝑓
(
x
)
]
ⁿ
=
[
lim
x→𝑎
𝑓
(
x
)
]
ⁿ
lim
x→𝑎
ⁿ
𝑓
(
x
)
=
ⁿ
lim
x→𝑎
𝑓
(
x
)
www.faastop.com
الله
π
lim
x→𝑎
ⁿ
𝑓
(
x
)
=
ⁿ
lim
x→𝑎
𝑓
(
x
)
lim
x→𝑎
ⁿ
𝑓
(
x
)
=
ⁿ
lim
x→𝑎
𝑓
(
x
)
CONTINUITYT
www.faastop.com
الله
π
A
f
u
n
c
t
i
o
n
f
(
x
)
i
s
s
a
i
d
t
o
b
e
continuous at x = 𝑎 if ,
Lt
x→𝑎⁻
𝑓(x)
=
Lt
x→𝑎⁺
𝑓(x)
=
f
(
a
)
www.faastop.com
الله
π
A
f
u
n
c
t
i
o
n
f
(
x
)
i
s
s
a
i
d
t
o
b
e
continuous at x = 𝑎 if ,
A
f
u
n
c
t
i
o
n
f
(
x
)
i
s
s
a
i
d
t
o
b
e
continuous at x = 𝑎 if ,
Lt
x→𝑎⁻
𝑓(x)
=
Lt
x→𝑎⁺
𝑓(x)
=
f
(
a
)
Lt
x→𝑎⁻
𝑓(x)
=
Lt
x→𝑎⁺
𝑓(x)
=
f
(
a
)
A
f
u
n
c
t
i
o
n
f
(
x
)
i
s
s
a
i
d
t
o
b
e
continuous at x = 𝑎 if ,
Lt
x→𝑎⁻
𝑓(x)
=
Lt
x→𝑎⁺
𝑓(x)
=
f
(
a
)