Close ×
Trigonometry Formulas
Limits and continuity
Derivatives
Integration
Close ×
MATH FORMULAS
HAND WRITTEN NOTES
☯
❮ Previous
Integration Formulas:
Integration of some standard functions
Integration of \(x^n\) with respect to \(x\) (dx)
∫
x
ⁿ
d
x
=
——
xⁿ⁺¹
𝑛+1
+
c
,
n
≠
-
1
www.faastop.com
الله
π
∫
x
ⁿ
d
x
=
——
xⁿ⁺¹
𝑛+1
+
c
,
n
≠
-
1
∫
x
ⁿ
d
x
=
——
xⁿ⁺¹
𝑛+1
+
c
,
n
≠
-
1
Integration of \( \frac{1}{x} \) with respect to \(x\) (dx)
∫
——
1
x
d
x
=
𝑙
𝑜
𝑔
ₑ
|
x
|
+
c
www.faastop.com
الله
π
∫
——
1
x
d
x
=
𝑙
𝑜
𝑔
ₑ
|
x
|
+
c
∫
——
1
x
d
x
=
𝑙
𝑜
𝑔
ₑ
|
x
|
+
c
Integration of \(e^x\) with respect to \(x\) (dx)
∫
𝑒
x
d
x
=
𝑒
x
+
c
www.faastop.com
الله
π
∫
𝑒
x
d
x
=
𝑒
x
+
c
∫
𝑒
x
d
x
=
𝑒
x
+
c
Integration of Trigonometric Functions
Integration of \( \sin(x) \) with respect to \( x \) (dx)
∫
𝑠
𝑖
𝑛
x
d
x
=
-
𝑐
𝑜
𝑠
x
+
c
www.faastop.com
الله
π
∫
𝑠
𝑖
𝑛
x
d
x
=
-
𝑐
𝑜
𝑠
x
+
c
∫
𝑠
𝑖
𝑛
x
d
x
=
-
𝑐
𝑜
𝑠
x
+
c
Integration of \( \cos(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑠
x
d
x
=
𝑠
𝑖
𝑛
x
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑠
x
d
x
=
𝑠
𝑖
𝑛
x
+
c
∫
𝑐
𝑜
𝑠
x
d
x
=
𝑠
𝑖
𝑛
x
+
c
Integration of \( \tan(x) \) with respect to \( x \) (dx)
∫
𝑡
𝑎
𝑛
x
d
x
=
-
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
x
|
+
c
www.faastop.com
الله
π
∫
𝑡
𝑎
𝑛
x
d
x
=
-
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
x
|
+
c
∫
𝑡
𝑎
𝑛
x
d
x
=
-
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
x
|
+
c
Integration of \( \cot(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑡
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑖
𝑛
x
|
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑡
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑖
𝑛
x
|
+
c
∫
𝑐
𝑜
𝑡
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑖
𝑛
x
|
+
c
Integration of \( \sec(x) \) with respect to \( x \) (dx)
∫
𝑠
𝑒
𝑐
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑒
𝑐
x
+
𝑡
𝑎
𝑛
x
|
+
c
www.faastop.com
الله
π
∫
𝑠
𝑒
𝑐
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑒
𝑐
x
+
𝑡
𝑎
𝑛
x
|
+
c
∫
𝑠
𝑒
𝑐
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑒
𝑐
x
+
𝑡
𝑎
𝑛
x
|
+
c
Integration of \( \csc(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑠
𝑒
𝑐
x
d
x
=
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
𝑒
𝑐
x
-
𝑐
𝑜
𝑡
x
|
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑠
𝑒
𝑐
x
d
x
=
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
𝑒
𝑐
x
-
𝑐
𝑜
𝑡
x
|
+
c
∫
𝑐
𝑜
𝑠
𝑒
𝑐
x
d
x
=
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
𝑒
𝑐
x
-
𝑐
𝑜
𝑡
x
|
+
c
Integration of \( \sec^2(x) \) with respect to \( x \) (dx)
∫
𝑠
𝑒
𝑐
²
x
d
x
=
𝑡
𝑎
𝑛
x
+
𝑐
www.faastop.com
الله
π
∫
𝑠
𝑒
𝑐
²
x
d
x
=
𝑡
𝑎
𝑛
x
+
𝑐
∫
𝑠
𝑒
𝑐
²
x
d
x
=
𝑡
𝑎
𝑛
x
+
𝑐
Integration of \( \csc^2(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑠
𝑒
𝑐
²
x
d
x
=
-
𝑐
𝑜
𝑡
x
+
𝑐
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑠
𝑒
𝑐
²
x
d
x
=
-
𝑐
𝑜
𝑡
x
+
𝑐
∫
𝑐
𝑜
𝑠
𝑒
𝑐
²
x
d
x
=
-
𝑐
𝑜
𝑡
x
+
𝑐
Integration of \( \sec(x) \tan(x) \) with respect to \( x \) (dx)
∫
𝑠
𝑒
𝑐
x
𝑡
𝑎
𝑛
x
d
x
=
𝑠
𝑒
𝑐
x
+
c
www.faastop.com
الله
π
∫
𝑠
𝑒
𝑐
x
𝑡
𝑎
𝑛
x
d
x
=
𝑠
𝑒
𝑐
x
+
c
∫
𝑠
𝑒
𝑐
x
𝑡
𝑎
𝑛
x
d
x
=
𝑠
𝑒
𝑐
x
+
c
Integration of \( \csc(x) \cot(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑠
𝑒
𝑐
x
𝑐
𝑜
𝑡
x
d
x
=
-
𝑐
𝑜
𝑠
𝑒
𝑐
x
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑠
𝑒
𝑐
x
𝑐
𝑜
𝑡
x
d
x
=
-
𝑐
𝑜
𝑠
𝑒
𝑐
x
+
c
∫
𝑐
𝑜
𝑠
𝑒
𝑐
x
𝑐
𝑜
𝑡
x
d
x
=
-
𝑐
𝑜
𝑠
𝑒
𝑐
x
+
c
Integration of Hyperbolic Functions
Integration of \( \sinh(x) \) with respect to \( x \) (dx)
∫
𝑠
𝑖
𝑛
𝒉
x
d
x
=
𝑐
𝑜
𝑠
𝒉
x
+
c
www.faastop.com
الله
π
∫
𝑠
𝑖
𝑛
𝒉
x
d
x
=
𝑐
𝑜
𝑠
𝒉
x
+
c
∫
𝑠
𝑖
𝑛
𝒉
x
d
x
=
𝑐
𝑜
𝑠
𝒉
x
+
c
Integration of \( \cosh(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑠
𝒉
x
d
x
=
𝑠
𝑖
𝑛
𝒉
x
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑠
𝒉
x
d
x
=
𝑠
𝑖
𝑛
𝒉
x
+
c
∫
𝑐
𝑜
𝑠
𝒉
x
d
x
=
𝑠
𝑖
𝑛
𝒉
x
+
c
Integration of \( \tanh(x) \) with respect to \( x \) (dx)
∫
𝑡
𝑎
𝑛
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
𝒉
x
|
+
c
www.faastop.com
الله
π
∫
𝑡
𝑎
𝑛
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
𝒉
x
|
+
c
∫
𝑡
𝑎
𝑛
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑐
𝑜
𝑠
𝒉
x
|
+
c
Integration of \( \coth(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑡
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑖
𝑛
𝒉
x
|
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑡
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑖
𝑛
𝒉
x
|
+
c
∫
𝑐
𝑜
𝑡
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑠
𝑖
𝑛
𝒉
x
|
+
c
Integration of \( \text{sech}(x) \) with respect to \( x \) (dx)
∫
𝑠
𝑒
𝑐
𝒉
x
d
x
=
𝑡
𝑎
𝑛
⁻
¹
(
𝑠
𝑖
𝑛
𝒉
x
)
+
c
www.faastop.com
الله
π
∫
𝑠
𝑒
𝑐
𝒉
x
d
x
=
𝑡
𝑎
𝑛
⁻
¹
(
𝑠
𝑖
𝑛
𝒉
x
)
+
c
∫
𝑠
𝑒
𝑐
𝒉
x
d
x
=
𝑡
𝑎
𝑛
⁻
¹
(
𝑠
𝑖
𝑛
𝒉
x
)
+
c
Integration of \( \text{csch}(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑡
𝑎
𝑛
𝒉
——
x
2
|
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑡
𝑎
𝑛
𝒉
——
x
2
|
+
c
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
d
x
=
𝑙
𝑜
𝑔
|
𝑡
𝑎
𝑛
𝒉
——
x
2
|
+
c
Integration of \( \text{sech}^2(x) \) with respect to \( x \) (dx)
∫
𝑠
𝑒
𝑐
𝒉
²
x
d
x
=
𝑡
𝑎
𝑛
𝒉
x
+
c
www.faastop.com
الله
π
∫
𝑠
𝑒
𝑐
𝒉
²
x
d
x
=
𝑡
𝑎
𝑛
𝒉
x
+
c
∫
𝑠
𝑒
𝑐
𝒉
²
x
d
x
=
𝑡
𝑎
𝑛
𝒉
x
+
c
Integration of \( \text{csch}^2(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
²
x
d
x
=
-
𝑐
𝑜
𝑡
𝒉
x
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
²
x
d
x
=
-
𝑐
𝑜
𝑡
𝒉
x
+
c
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
²
x
d
x
=
-
𝑐
𝑜
𝑡
𝒉
x
+
c
Integration of \( \text{sech}(x) \tanh(x) \) with respect to \( x \) (dx)
∫
𝑠
𝑒
𝑐
𝒉
x
𝑡
𝑎
𝑛
𝒉
x
d
x
=
-
𝑠
𝑒
𝑐
𝒉
x
+
c
www.faastop.com
الله
π
∫
𝑠
𝑒
𝑐
𝒉
x
𝑡
𝑎
𝑛
𝒉
x
d
x
=
-
𝑠
𝑒
𝑐
𝒉
x
+
c
∫
𝑠
𝑒
𝑐
𝒉
x
𝑡
𝑎
𝑛
𝒉
x
d
x
=
-
𝑠
𝑒
𝑐
𝒉
x
+
c
Integration of \( \text{csch}(x) \coth(x) \) with respect to \( x \) (dx)
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
𝑐
𝑜
𝑡
𝒉
x
d
x
=
-
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
+
c
www.faastop.com
الله
π
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
𝑐
𝑜
𝑡
𝒉
x
d
x
=
-
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
+
c
∫
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
𝑐
𝑜
𝑡
𝒉
x
d
x
=
-
𝑐
𝑜
𝑠
𝑒
𝑐
𝒉
x
+
c
Integration of Some other Functions
Integration of \( \frac{1}{\sqrt{a^2 - x^2}} \) with respect to \( x \) (dx)
∫
1
𝑎²-x²
𝑑
x
=
𝑠
𝑖
𝑛
-1
[
——
x
𝑎
]
+
c
www.faastop.com
الله
π
∫
1
𝑎²-x²
𝑑
x
=
𝑠
𝑖
𝑛
-1
[
——
x
𝑎
]
+
c
∫
1
𝑎²-x²
𝑑
x
=
𝑠
𝑖
𝑛
-1
[
——
x
𝑎
]
+
c
Integration of \( -\frac{1}{\sqrt{a^2 - x^2}} \) with respect to \( x \) (dx)
∫
-1
𝑎²-x²
𝑑
x
=
𝑐
𝑜
𝑠
-1
[
——
x
𝑎
]
+
c
www.faastop.com
الله
π
∫
-1
𝑎²-x²
𝑑
x
=
𝑐
𝑜
𝑠
-1
[
——
x
𝑎
]
+
c
∫
-1
𝑎²-x²
𝑑
x
=
𝑐
𝑜
𝑠
-1
[
——
x
𝑎
]
+
c
Integration of \( \frac{1}{a^2 + x^2} \) with respect to \( x \) (dx)
∫
1
𝑎²+x²
𝑑
x
=
——
1
𝑎
𝑡
𝑎
𝑛
-1
[
——
x
𝑎
]
+
c
www.faastop.com
الله
π
∫
1
𝑎²+x²
𝑑
x
=
——
1
𝑎
𝑡
𝑎
𝑛
-1
[
——
x
𝑎
]
+
c
∫
1
𝑎²+x²
𝑑
x
=
——
1
𝑎
𝑡
𝑎
𝑛
-1
[
——
x
𝑎
]
+
c
Integration of \( -\frac{1}{a^2 + x^2} \) with respect to \( x \) (dx)
∫
-1
𝑎²+x²
𝑑
x
=
——
1
𝑎
𝑐
𝑜
𝑡
-1
[
——
x
𝑎
]
+
c
www.faastop.com
الله
π
∫
-1
𝑎²+x²
𝑑
x
=
——
1
𝑎
𝑐
𝑜
𝑡
-1
[
——
x
𝑎
]
+
c
∫
-1
𝑎²+x²
𝑑
x
=
——
1
𝑎
𝑐
𝑜
𝑡
-1
[
——
x
𝑎
]
+
c
Integration of \( -\frac{1}{a^2 - x^2} \) with respect to \( x \) (dx)
∫
1
x x²-𝑎²
𝑑
x
=
——
1
𝑎
𝑠
𝑒
𝑐
-1
[
——
x
𝑎
]
+
c
www.faastop.com
الله
π
∫
1
x x²-𝑎²
𝑑
x
=
——
1
𝑎
𝑠
𝑒
𝑐
-1
[
——
x
𝑎
]
+
c
∫
1
x x²-𝑎²
𝑑
x
=
——
1
𝑎
𝑠
𝑒
𝑐
-1
[
——
x
𝑎
]
+
c
Integration of \( -\frac{1}{x \sqrt{x^2 - a^2}} \) with respect to \( x \) (dx)
∫
-1
x x²-𝑎²
𝑑
x
=
——
1
𝑎
𝑐
𝑜
𝑠
𝑒
𝑐
-1
[
——
x
𝑎
]
+
c
www.faastop.com
الله
π
∫
-1
x x²-𝑎²
𝑑
x
=
——
1
𝑎
𝑐
𝑜
𝑠
𝑒
𝑐
-1
[
——
x
𝑎
]
+
c
∫
-1
x x²-𝑎²
𝑑
x
=
——
1
𝑎
𝑐
𝑜
𝑠
𝑒
𝑐
-1
[
——
x
𝑎
]
+
c